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Abstract. We propose a novel ranking-based semantics for Dung-
style argumentation frameworks with the help of conditional log-
ics. Using an intuitive translation for an argumentation framework
to generate conditionals, we can apply nonmonotonic inference sys-
tems to generate a ranking on possible worlds. With this ranking we
construct a ranking for our arguments. With a small extension to this
ranking-based semantics we already satisfy some desirable proper-
ties for a ranking over arguments.

1 Introduction

Formal argumentation [2] describes a family of approaches to mod-
eling rational decision-making through the representation of argu-
ments and their relationships. A particular important representative
approach is that of abstract argumentation [7], which focuses on the
representation of arguments and a conflict relation between argu-
ments through modeling this setting as a directed graph. Here, ar-
guments are identified by vertices and an attack from one argument
to another is represented as a directed edge. This simple model al-
ready provides an interesting object of study, see [3] for an overview.
Reasoning is usually performed in abstract argumentation by consid-
ering extensions, i. e., sets of arguments that are jointly acceptable
given some formal account of “acceptability”. Therefore, this classi-
cal approach differentiates between “acceptable” arguments and “re-
jected” arguments. However, empirical cognitive studies such as the
ones described in [15,16] have shown that humans assess arguments
in a more fine-grained manner. For example, while [16] provides ev-
idence that while humans adopt the “reinstatement principle” (which
states that arguments defended by accepted arguments should also be
accepted), they usually assign lower confidence to reinstated argu-
ments than non-attacked ones. Similarly, the experiments described
in [15] advocate that a probabilistic interpretation of arguments [10]
is more suitable than the classical two-valued interpretation.

In order to formally address the observations described above,
ranking-based semantics [1] provide a finer-grained assessment of
arguments. Here, we follow this line of work and make some first
steps towards the use of conditional logic and the System Z inference
mechanism [8] to define rankings between arguments. Conditional
logic is a general non-monotonic representation formalism that fo-
cuses on default rule of the form “if A then B” and there exist some
interesting relationships between this formalism and that of formal
argumentation [9, 13]. We make use of these relationships here for
the purpose of defining a novel ranking-based semantics for abstract
argumentation.
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Figure 1. Argumentation framework from Example 1.

The rest of this work is organized as follows: In Section 2 all nec-
essary preliminaries will be stated. Then we discus our ranking idea
in Section 3 and with Section 4 we conclude this paper.

2 Background
In the following, we want to briefly recall some general preliminaries
on argumentation frameworks and conditional logics.

2.1 Abstract Argumentation Frameworks
In this work, we use argumentation frameworks first introduced in
[7]. An argumentation framework AF is a pair 〈A,R〉, where A is
a finite set of arguments andR is a set of attacks between arguments
with R ⊆ A × A. An argument a is said to attack b if (a, b) ∈ R.
We call an argument a acceptable with respect to a set S ⊆ A if
for each attacker b ∈ A of this argument a with (b, a) ∈ R, there
is an argument c ∈ S which attacks b, i. e., (c, b) ∈ R; we then say
that a is defended by c. An argumentation framework 〈A,R〉 can be
illustrated by a directed graph with vertex set A and edge setR.

Example 1. Let AF = 〈A,R〉 with A = {a, b, c, d} and R =
{(a, b), (b, c), (c, d), (d, c)} be an argumentation framework. The
corresponding graph is shown in Figure 1. Argument b is not ac-
ceptable with respect to any set S of arguments, as b is not defended
against a’s attack. On the other hand, c is acceptable with respect to
S = {a, c}, as a defends c against b’s attack and c defends itself
against d’s attack.

Up to this point the arguments can only have the two statuses of
accepted or not accepted2, but we want to have a more fine-graded
comparison between arguments. For this we use the idea of ranking-
based semantics [1, 6].

Definition 2 (Ranking-based semantics). A ranking-based seman-
tics σ associates to any argumentation framework AF = 〈A,R〉 a
preorder �σAF on A. a �σAF b means that a is at least as acceptable
as b. With a 'σAF b we describe that a and b are equally acceptable,

2 However, using labeling-based semantics we can generate a three-valued
model [18].



i. e., a �σAF b and b �σAF a. Finally we say a is strictly more accept-
able than b, denoted by a �σAF b, if a �σAF b and not b �σAF a. We
denote by σ(AF ) the ranking on A returned by σ.

2.2 Conditional Logics
We use a set of atomsA and connectives∧ (and),∨ (or), and¬ (nega-
tion) to generate the propositional language L(A). w is an interpre-
tation (or possible world) for L(A) when w : A→ {TRUE, FALSE}.
We denote the set of all interpretations as Ω(A). An interpretation
w satisfies an atom a ∈ A (w ` a), if and only if w(a) = TRUE.
The relation ` is extended to arbitrary formulas in the usual way.
We will abbreviate an interpretation w with its complete conjunc-
tion, i. e., if a1, . . . , an ∈ A are the atoms that are assigned TRUE

by w and an+1, . . . , am ∈ A are the ones assigned with FALSE,
w will be identified with a1 . . . anan+1 . . . am. For Φ ⊆ L{A}
we define w ` Φ if and only if w ` φ for every φ ∈ Φ. With
Mod(X) = {w ∈ Ω(A)|w ` X} we define the set of models for
a set of formulas X . A conditional is a structure of the form (ϕ|ψ)
and represents a rule “If ψ than (usually) φ”.

We can consider conditionals as generalized indicator functions
[5] for possible worlds w as follows:

((ϕ|φ))(w) =


1 : w ` φ ∧ ϕ
0 : w ` φ ∧ ¬ϕ
u : w ` ¬φ

(1)

where u stands for unknown. Informally speaking, a world w verifies
a conditional (ϕ|φ) iff it satisfies both antecedent and conclusion
((ϕ|φ)(w) = 1); it falsifies iff is satisfies the antecedence but not
the conclusion ((ϕ|φ)(w) = 0); otherwise the conditional is not
applicable ((ϕ|φ)(w) = u). A conditional (ϕ|φ) is satisfied by w if
it does not falsify it.

Semantics are given to sets of conditionals via ranking functions
[8,17]. With a ranking function, also called ordinal conditional func-
tion (OCF), κ : Ω(A) → N ∪ {∞} we can express the degree
of plausibility of possible worlds κ(φ) := min{κ(w)|w ` φ}.
With the help of OCFs κ we can express the acceptance of condi-
tionals and nonmonotonic inferences, so (ϕ|φ) is accepted by κ iff
κ(φ ∧ ϕ) < κ(φ ∧ ϕ). With Bel(κ) = {φ|∀w ∈ κ−1(0) : w ` φ}
we denote the most plausible worlds.

As there are an infinite number of ranking functions that accept a
given set of conditionals, we consider System Z [8] as an inference
relation, which yields us a uniquely defined ranking function for rea-
soning.

Definition 3 (System Z). (ϕ|φ) is tolerated by a finite set of con-
ditionals ∆ if there is a possible world w with (φ|ϕ)(w) = 1 and
(φ′|ϕ′)(w) 6= 0 for all (φ′|ϕ′) ∈ ∆. The Z-partition (∆0, . . . ,∆n)
of ∆ is defined as:

• ∆0 = {δ ∈ ∆|∆ tolerates δ}
• ∆1, . . . ,∆n is the Z-partition of ∆ \∆0

For δ ∈ ∆: Z∆(δ) = i iff δ ∈ ∆i and ∆1, . . . ,∆n is the Z-
partitioning of ∆.

We define a ranking function κZ∆ : Ω → N ∪ {∞} as κZ∆(w) =
max{Z(δ)|δ(w) = 0, δ ∈ ∆} + 1, with max ∅ = −1. Finally
∆ |∼Z φ if and only if φ ∈ Bel(κZ∆).

Example 4. Let ∆ = {(a|¬b), (b|¬a), (c|¬b ∧ ¬a ∧
¬d), (d|>), (c|¬d)}. For this set of conditionals, ∆ = ∆0 ∪ ∆1

with ∆0 = {(a|¬b), (b|¬a), (c|¬b ∧ ¬a ∧ ¬d)} and ∆1 =
{(¬a ∧ ¬b| d)} therefore we have the values from Table 1. So we
can derive (κZ∆0

)−1(0) = {abcd, abc̄d, ab̄cd, ab̄c̄d, ābcd, ābc̄d} and
(κZ∆1

)−1(0) = ∅.

3 Ranking-based Semantics with Conditional
Logic Semantics

In this work we want to extend previous works [9, 13] to not only
combine abstract argumentation and conditional logics, but also
present ideas to rank arguments using this combination.

The general idea is to represent an abstract argumentation frame-
work as a set of conditionals, using System Z in order to determine
a ranking function that accepts these conditionals, and then extract
rankings on arguments from this ranking function. First, we need a
translation from an argumentation framework to a set of conditionals.
It is clear, that for an argument to be acceptable every attacker has to
be not acceptable. With this idea we can construct the conditional
logic knowledge base. Let AF be an argumentation framework and
θ : A → CA, where CA is the set of conditional knowledge bases
over the propositional language generated by A.

θ(AF ) = {(a|B) | a ∈ A, B =
∧

(b,a)∈R

¬b} (2)

In other words, θ models that an argument is accepted if all its at-
tackers are not accepted.

We can use inference systems like System Z on these conditional
knowledge bases to generate a ranking over the possible worlds.
Based on this ranking we want to rank the arguments. Our first idea
is to count the number of occurrences of a positive literal in the set of
worlds (κZ∆)−1(0) and then rank the corresponding arguments based
on this number. So if an argument a has a higher count then an argu-
ment b, we say a � b. This simple idea yields a clear and uniquely
defined ranking, while not needing a complex algorithm to be com-
puted.

Definition 5. Let AF = 〈A,R〉 be an argumentation framework
translated with help of θ(AF ) and an inference system to the set of
worlds κZ∆. Define

CcsθAF (a) = |{w ∈ (κZθ(AF ))
−1(0)|w ` a}| (3)

We can then use this counting function for our ranking-based se-
mantics.

Definition 6 (Conditional-counting-based semantics). The
Conditional-counting-based semantics (Ccbs) associates to any
argumentation framework AF = 〈A,R〉 a ranking �CcbsAF on A
such that ∀a, b ∈ A with respect to a translation θ and a ranking
function κZ∆(ω).

a �CcbsAF b if and only if CcsθAF (a) ≥ CcsθAF (b)

Example 7. Let AF = 〈A,R〉 with A = {a, b, c, d} and
R = {(a, b), (b, a), (a, c), (b, c), (d, c)} be an argumentation
framework. The corresponding graph can be found in Figure 2.
Using Equation 2 we obtain ∆ = {(a|¬b), (b|¬a), (c|¬b ∧
¬a ∧ ¬d), (d|>)}. With ∆ = ∆0 we have (κZ∆)−1(0) =
{abcd, abc̄d, ab̄cd, ab̄c̄d, ābcd, ābc̄d}. Now we can count the num-
ber of occurrences of each argument. So Ccsθ

κZ
∆(ω)

(a) = 4,

Ccsθ
κZ

∆(ω)
(b) = 4, Ccsθ

κZ
∆(ω)

(c) = 3 and Ccsθ
κZ

∆(ω)
(d) = 6. This

results in d �Ccbs a 'Ccbs b �Ccbs c.



Table 1. Values for Example 4

ω Z((a|¬b)) Z((b|¬a)) Z((c|¬b ∧ ¬a ∧ ¬d)) Z((d|>)) Z((¬a ∧ ¬b|d))

abcd u u u 1 0
abcd u u u 0 u
abcd u u u 1 0
abcd u u u 0 u
abcd 1 u u 1 0
abcd 1 u u 0 u
abcd 1 u u 1 0
abcd 1 u u 0 u
abcd u 1 u 1 0
abcd u 1 u 0 u
abcd u 1 u 1 0
abcd u 1 u 0 u
abcd 0 0 u 1 1
abcd 0 0 1 0 u
abcd 0 0 u 1 1
abcd 0 0 0 0 u

a b

c

d

Figure 2. Argumentation framework from Example 7

Looking at the graph we see, that argument d is unattacked, so it is
intuitive that this argument is ranked at the highest position. Also the
arguments a and b are attacking each other and are not attacked by
any other argument. These two arguments are there indistinguishable
and should be ranked on the same level, but both arguments have at
least one attacker so it should be ranking lower then d. Argument c is
attacked by three other arguments and defended by none, hence this
argument should be ranked lower then its attackers.

For some further ideas of other translations we recommend [9].
Instead of System Z we could also use c-representations [11].

Ranking-based semantics are usually evaluated wrt. a series of ra-
tionality postulates [1,6]. In this work, we provide some first steps in
this direction and look at four simple ones, namely Abstraction [1],
Independence [14], Void Precedence [1, 14] and Self-Contradiction
[14]. With the property of Abstraction we can ensure, that a ranking
over arguments only depends on the attacks between arguments and
not on the identity of the arguments.

Definition 8. An isomorphism γ between two argumentation frame-
work AF = 〈A,R〉 and AF ′ = 〈A′,R′〉 is a bijective function
γ : A → A′ such that ∀x, y ∈ A, (x, y) ∈ R if and only if
(γ(x), γ(y)) ∈ R′. With a slight abuse of notation, we will note
AF ′ = γ(AF ).

Definition 9 (Abstraction). A ranking-based semantics ω satisfies
Abstraction iff for any AF, AF’, for every isomorphism γ such that
AF ′ = γ(AF ), we have x �σAF iff γ(x) �σAF γ(y).

It is natural, that arguments from two different disconnected sub-
graphs should have no influence on each other for a ranking. A rank-
ing, which satisfies Independence, ensures this idea.

Definition 10. The connected components of an argumentation
framework AF are the set of largest subgraphs of AF , denoted by
cc(AF ), where two arguments are in the same component of AF iff
there exists some path between them.

Definition 11 (Independence). A ranking-based semantics ω satis-
fies Independence iff for any argumentation frameworkAF such that
∀AF ′ ∈ cc(AF ), ∀x, y ∈ Arg(AF ′), x �σAF ′ y iff x �σAF y.

Proposition 12. Ccbs satisfies Abstraction and Independence.

Proof. For Abstraction we can see, that using an isomorphism does
not change the structure of an argumentation framework nor does it
change relationships between arguments. Ccbs does not change if an
argument a is renamed to c as long as incoming and outgoing attacks
are still the same.

Adding independent arguments to an argumentation framework
does not change the ranking between two arguments. Given an argu-
mentation framework AF with two arguments a, b and a �ccbsAF b.
If we add an argument c to this AF to create AF ′, at most we
would change the Ccs-score of a and b by two, but this change takes
place for both. So if CcsθAF (a) ≥ CcsθAF (b), then it holds that
CcsθAF ′(a) ≥ CcsθAF ′(b). q

The idea of Void Precedence states that a non-attacked argument
should be strictly more acceptable than an attacked argument.

Definition 13 (Void Precedence). A ranking-based semantics σ sat-
isfies Void Precedence if and only if for any AF = 〈A,R〉 and
∀a, b ∈ A , if ∀c ∈ A (c, a) /∈ R and ∃d ∈ A with (d, b) ∈ R ,
then a �σAF b.

On the contrary, a self-attacking argument should always be
ranked worse than any other argument, because these arguments are
contradicting themselves. This is handled with the property Self-
Contradiction.

Definition 14 (Self-Contradiction). A ranking-based semantics σ
satisfies Self-Contradiction if and only if for any AF = 〈A,R〉 and
∀a, bA, if (a, a) /∈ R and (b, b) ∈ R then a �σAF b.



Proposition 15. Ccbs does not satisfy Void Precedence nor Self-
Contradiction.

Proof. To prove this we look at the following example. Let AF =
〈A,R〉 with A = {a, b} and R = {(a, a)} be an argumentation
framework. Using Equation 2 we obtain ∆ = {(a|¬a), (b|>)}. With
∆ = ∆0 we have (κZ∆)−1(0) = {ab} and Ccsθ

κZ
∆(ω)

(a) = 1,

Ccsθ
κZ

∆(ω)
(b) = 1. This results in a 'CcbsAF b. Therefore a is not

strictly less acceptable then b. So Ccbs does not satisfy Void Prece-
dence nor Self-Contradiction. q

Hence this semantics has a few shortcomings, we propose an ex-
tension. Before we count the occurrences we rank every argument
with an selfattack at the lowest possible position.

Definition 16. Ccbs’ associates to any argumentation framework
AF = 〈A,R〉 a ranking �Ccbs

′
AF on A such that ∀a, b ∈ A with

respect to a translation θ and a ranking function κZ∆(ω).

if (a, a) /∈ R and (b, b) ∈ R then a �σAF b

otherwise a �Ccbs
′

AF b if CcsθAF (a) ≥ CcsθAF (b)

When we evaluate this ranking semantics it is easy to see that
Ccbs’ satisfies Self-Contradiction (we omit the proof).

Proposition 17. Ccbs’ satisfies Void Precedence.

So with this small extension we now satisfy an additional two very
intuitive properties for ranking-based semantics. We leave an inves-
tigation of further properties for future work.

4 Conclusion
In this work we have presented a first idea to rank arguments with
conditional logics. For this we first looked at a simple translation
from an argumentation framework to conditional logic and applied an
inference relation. Using a simple counting idea results in a ranking
over arguments.

Although this semantics does not satisfy two desired properties,
with a small extension we have shown that these two properties
are satisfied. Also we have established a simple connection between
ranking arguments and conditional logic. In the future we can im-
prove this idea and hopefully present a ranking-based semantics,
which satisfies a good number of properties presented in [6].

Another future work approach is to look at other frameworks like
ADFs presented in [4], which uses an acceptance function for every
argument. This could prove to be helpful in finding a ranking with
conditional logic.

[12] used a similar idea to rank arguments from a Defeasible Logic
Programming (DeLP), a system, which combines logics program-
ming with defeasible argumentation. They used System Z to identify
“good” arguments.
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